
Brandon Mitchell
Twitter: @sudo_bmitch
StackOver�ow: bmitch

Frequently Answered Queries

from StackOver�ow

1 / 92

How Do We Learn?

2 / 92

How Do We Learn?
RTFM

Practice

Drills

Teaching

3 / 92

Typical StackOver�ow User Background
Mostly developers

Often more comfortable with an IDE than a CLI

DevOps is shifting those Devs into more Ops tasks

Pro: devs no longer depend on ops to manage their app runtime environment

4 / 92

Typical StackOver�ow User Background
Mostly developers

Often more comfortable with an IDE than a CLI

DevOps is shifting those Devs into more Ops tasks

Pro: devs no longer depend on ops to manage their app runtime environment

Con: devs no longer depend on ops to manage their app runtime environment

Devs are now learning OS/Linux/distributions, scripting, package managers,
networking, and storage.

5 / 92

General Docker Questions

6 / 92

Q: How do containers differ from VM's
Containers have a shared kernel, application isolation vs hardware isolation

How do we change the mindset of people using containers as a lightweight VM?

7 / 92

Q: How do containers differ from VM's
Containers have a shared kernel, application isolation vs hardware isolation

How do we change the mindset of people using containers as a lightweight VM?

Who likes uptime?

8 / 92

Q: How do containers differ from VM's
Containers have a shared kernel, application isolation vs hardware isolation

How do we change the mindset of people using containers as a lightweight VM?

Who likes uptime?

Who wants to maintain a server that hasn't been rebooted for 3 years, and the
original admin has left?

9 / 92

Q: How do containers differ from VM's
Containers have a shared kernel, application isolation vs hardware isolation

How do we change the mindset of people using containers as a lightweight VM?

Who likes uptime?

Who wants to maintain a server that hasn't been rebooted for 3 years, and the
original admin has left?

Uptime quickly becomes a ticking time bomb.

10 / 92

Q: How do containers differ from VM's
Containers have a shared kernel, application isolation vs hardware isolation

How do we change the mindset of people using containers as a lightweight VM?

Who likes uptime?

Who wants to maintain a server that hasn't been rebooted for 3 years, and the
original admin has left?

Uptime quickly becomes a ticking time bomb.

What we want is availability, not uptime. We want a LB pointing to replicas spread
across multiple AZ's so we can have low uptime and high availability.

11 / 92

Q: How do containers differ from VM's
Practical differences:

Don't ssh into containers (exec, and only in dev)

Don't upgrade containers in place (replace them)

Don't install multiple apps inside a single container (compose �les)

Don't give containers static IP's (LB/reverse proxies)

Don't backup containers (backup volumes)

Don't export containers to make new images (use a Docker�le)

12 / 92

Q: Can I use docker to run different OS's?

13 / 92

Q: Can I use docker to run different OS's?
A: Nope

14 / 92

Q: Can I use docker to run different OS's?
A: Nope*

*terms and conditions apply

15 / 92

Q: Can I use docker to run different OS's?
The base of the OS is the kernel, docker containers run on the same kernel.

$ uname -v
#1 SMP Debian 4.9.82-1+deb9u3 (2018-03-02)

$ docker run --rm ubuntu uname -v
#1 SMP Debian 4.9.82-1+deb9u3 (2018-03-02)

$ docker run --rm centos uname -v
#1 SMP Debian 4.9.82-1+deb9u3 (2018-03-02)

$ docker run --rm alpine uname -v
#1 SMP Debian 4.9.82-1+deb9u3 (2018-03-02)

16 / 92

Q: Can I use docker to run different OS's?
Terms and Conditions:

Base images are an OS to some people.

Docker runs on different platforms.

Swarm can include nodes from different platforms.

Desktops typically include embedded VMs.

Default runc can be swapped for a VM runtime.

17 / 92

Q: How do I pick a base image?

18 / 92

Q: How do I pick a base image?
A: It depends.

19 / 92

Q: How do I pick a base image?
A: It depends.

Stick with tools you know

Leverage existing open source resources

Minimize your overhead and attack surface

Statically compile binaries

20 / 92

Docker�le

21 / 92

Q: Why doesn't RUN work?
Why am I getting ./build.sh is not found?

RUN cd /app/src
RUN ./build.sh

22 / 92

Q: Why doesn't RUN work?
Why am I getting ./build.sh is not found?

RUN cd /app/src
RUN ./build.sh

The only part saved from a RUN is the �lesystem (as a new layer).

Environment variables, launched daemons, and the shell state are all discarded with the
temporary container when pid 1 exits.

23 / 92

Q: Why doesn't RUN work?
Why am I getting ./build.sh is not found?

RUN cd /app/src
RUN ./build.sh

The only part saved from a RUN is the �lesystem (as a new layer).

Environment variables, launched daemons, and the shell state are all discarded with the
temporary container when pid 1 exits.

Solution: merge multiple lines with && :

RUN cd /app/src && ./build.sh

24 / 92

Q: Do I use ENTRYPOINT or CMD?
Either alone have the same effect.

CMD is overridden by

docker run my_image ${cmd}

ENTRYPOINT is overridden by

docker run --entrypoint ${entrypoint} my_image

Used together, docker runs ${entrypoint} ${cmd}

25 / 92

Q: What's the difference between the string and
json syntax?

RUN, CMD, and ENTRYPOINT can each use either syntax

The string syntax includes a shell, /bin/sh -c "${cmd}" by default.

The json syntax executes the command directly, without a shell.

26 / 92

Shell Pros:

Expands variables
Command chaining (&&)
I/O redirection

Q: What's the difference between the string and
json syntax?

RUN, CMD, and ENTRYPOINT can each use either syntax

The string syntax includes a shell, /bin/sh -c "${cmd}" by default.

The json syntax executes the command directly, without a shell.

27 / 92

Shell Pros:

Expands variables
Command chaining (&&)
I/O redirection

Shell Cons:

Intercepts signals
Extra processing to merge entrypoint
with cmd

Q: What's the difference between the string and
json syntax?

RUN, CMD, and ENTRYPOINT can each use either syntax

The string syntax includes a shell, /bin/sh -c "${cmd}" by default.

The json syntax executes the command directly, without a shell.

28 / 92

Q: What's the difference between the string and
json syntax?
String/Shell Syntax:

RUN echo hello world
ENTRYPOINT /entrypoint.sh
CMD run a b c

29 / 92

Q: What's the difference between the string and
json syntax?
String/Shell Syntax:

RUN echo hello world
ENTRYPOINT /entrypoint.sh
CMD run a b c

Json/Exec Syntax:

RUN ["echo", "hello", "world"]
ENTRYPOINT ["/entrypoint.sh"]
CMD ["run", "a", "b", "c"]

30 / 92

Q: What's the difference between the string and
json syntax?
What if cmd is a string and you have an entrypoint?

/entrypoint.sh /bin/sh -c "args to entrypoint"

31 / 92

Q: What's the difference between the string and
json syntax?
What if cmd is a string and you have an entrypoint?

/entrypoint.sh /bin/sh -c "args to entrypoint"

To �x this in the entrypoint:

#!/bin/sh
if [$# -gt 1 -a "$1" = "/bin/sh" -a "$2" = "-c"]; then
 shift 2
 eval "set -- $1"
fi
exec "$@"

32 / 92

Q: Why can't I extend this image?

FROM busybox as parent
CMD echo hello cmd
FROM parent
COPY entrypoint.sh /
ENTRYPOINT ["/entrypoint.sh"]

$ cat entrypoint.sh
#!/bin/sh
echo hello entrypoint
exec "$@"

What does this output?

33 / 92

Q: Why can't I extend this image?

$ docker run -it --rm test-entrypoint
hello entrypoint
$

Typically a child image will extend it's parent image, and any metadata will be inherited.

34 / 92

Q: Why can't I extend this image?

$ docker run -it --rm test-entrypoint
hello entrypoint
$

Typically a child image will extend it's parent image, and any metadata will be inherited.

One exception: when setting an ENTRYPOINT the value of CMD from parent images is
nulled out.

35 / 92

Cache requires:

Same command to be run

Same checksum on all �les

Same previous layer

Image was built locally

Q: Why doesn't build use the cache?

36 / 92

Cache requires:

Same command to be run

Same checksum on all �les

Same previous layer

Image was built locally

Cache can be broken by:

Changing a build ARG value

Changing a timestamp

The previous layer being rebuilt

Q: Why doesn't build use the cache?

37 / 92

Cache requires:

Same command to be run

Same checksum on all �les

Same previous layer

Image was built locally

Cache can be broken by:

Changing a build ARG value

Changing a timestamp

The previous layer being rebuilt

Q: Why doesn't build use the cache?

To trust images pulled from a registry, use:

docker build --cache-from my_image ...

38 / 92

Q: Should I use COPY or ADD?
A: Use COPY

39 / 92

Q: Should I use COPY or ADD?
A: Use COPY (when possible)

40 / 92

Q: Should I use COPY or ADD?
A: Use COPY (when possible)

ADD provides additional features which comes with additional overhead:

Pulls URL's

Extracts tar �les including compressed �les

41 / 92

Q: Should I use COPY or ADD?
Both ADD and COPY:

Cannot access local �les outside of the build context

Create a directory in the container if needed

Copy the contents of the directory rather than the directory itself

Default to creating �les with uid/gid 0

Use --chown and --chmod to correct permissions

42 / 92

Q: Can I de�ne runtime options in a Docker�le?
A: Nope

43 / 92

The Docker�le cannot:

Specify the image name

Publish ports

Mount volumes

Add capabilities

Q: Can I de�ne runtime options in a Docker�le?
A: Nope... that's what a compose �le is for.

44 / 92

The Docker�le cannot:

Specify the image name

Publish ports

Mount volumes

Add capabilities

Consider the security vulnerabilities if you
could.

Q: Can I de�ne runtime options in a Docker�le?
A: Nope... that's what a compose �le is for.

45 / 92

Q: Why is my image so large?
How big are the layers resulting from this Docker�le:

FROM busybox

RUN mkdir /data
RUN dd if=/dev/zero bs=1024 count=1024 of=/data/one
RUN chmod -R 0777 /data
RUN dd if=/dev/zero bs=1024 count=1024 of=/data/two
RUN chmod -R 0777 /data
RUN rm /data/one

CMD ls -alh /data

46 / 92

Q: Why is my image so large?
Running the image you see the 1MB �le:

-rwxrwxrwx 1 root root 1.0M May 12 00:14 two

Each dd command adds a 1MB layer.

47 / 92

Q: Why is my image so large?
Running the image you see the 1MB �le:

-rwxrwxrwx 1 root root 1.0M May 12 00:14 two

Each dd command adds a 1MB layer.

Each chmod command will change permissions and copy the entire 1MB �le to the
next layer.

48 / 92

Q: Why is my image so large?
Running the image you see the 1MB �le:

-rwxrwxrwx 1 root root 1.0M May 12 00:14 two

Each dd command adds a 1MB layer.

Each chmod command will change permissions and copy the entire 1MB �le to the
next layer.

What does the rm command do to the image size?

49 / 92

Q: Why is my image so large?
The rm command only changes directory metadata in the next layer:

Step 6/7 : RUN chmod -R 0777 /data
 ---> Running in 038bd2bc5aea
 ---> 77793bf30d5f
Step 7/8 : RUN rm /data/one
 ---> Running in 504c6e9b6637
 ---> 9fe0e2f18893
...

$ docker image ls -a | grep 77793bf30d5f
REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> 77793bf30d5f 10 minutes ago 6.37MB
$ docker image ls -a | grep 9fe0e2f18893
REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> 9fe0e2f18893 10 minutes ago 6.37MB

50 / 92

Q: Why is my image so large?
Resulting 1MB �le has become 4MB on disk and over the network

Compare the two resulting images to see the added disk space:

REPOSITORY TAG IMAGE ID CREATED SIZE
busybox latest 54511612f1c4 8 months ago 1.13MB
test-layers latest 757ce49dd12f 10 minutes ago 6.37MB

Subtracting the two you get the expected ~5MB

51 / 92

Q: Why is my image so large?
5MB? Not 4MB? Where did the extra 1MB come from?

FROM busybox
RUN mkdir /data
RUN dd if=/dev/zero bs=1024 count=1024 of=/data/one
RUN chmod -R 0777 /data
RUN dd if=/dev/zero bs=1024 count=1024 of=/data/two
RUN chmod -R 0777 /data
RUN rm /data/one
CMD ls -alh /data

52 / 92

Q: Why is my image so large?
5MB? Not 4MB? Where did the extra 1MB come from?

FROM busybox
RUN mkdir /data
RUN dd if=/dev/zero bs=1024 count=1024 of=/data/one
RUN chmod -R 0777 /data
RUN dd if=/dev/zero bs=1024 count=1024 of=/data/two
RUN chmod -R 0777 /data
RUN rm /data/one
CMD ls -alh /data

A chmod or chown changes a timestamp on the �le even when there is no permission
or ownership change made.

53 / 92

Q: Why is my image so large?
How can we examine layers? Build with docker build --rm=false .

...
Step 2/7 : RUN mkdir /data
 ---> Running in 04c5fa1360b0
 ---> 9b4368667b8c
Step 3/7 : RUN dd if=/dev/zero bs=1024 count=1024 of=/data/one
 ---> Running in f1b72db3bfaa
1024+0 records in
1024+0 records out
1048576 bytes (1.0MB) copied, 0.006002 seconds, 166.6MB/s
 ---> ea2506fc6e11

54 / 92

Q: Why is my image so large?
Check each temp image with docker diff ${cid}

$ docker diff 04c5fa1360b0 # mkdir /data
A /data
$ docker diff f1b72db3bfaa # dd if=/dev/zero bs=1024 count=1024 of=/data/one
C /data
A /data/one
$ docker diff 81c607555a7d # chmod -R 0777 /data
C /data
C /data/one
$ docker diff 1bd249e1a47b # dd if=/dev/zero bs=1024 count=1024 of=/data/two
C /data
A /data/two
$ docker diff 038bd2bc5aea # chmod -R 0777 /data
C /data/one
C /data/two
$ docker diff 504c6e9b6637 # rm /data/one
C /data
D /data/one

55 / 92

Q: Why is my image so large?
Reducing image size by merging RUN lines:

FROM busybox

RUN mkdir /data \
 && dd if=/dev/zero bs=1024 count=1024 of=/data/one \
 && chmod -R 0777 /data \
 && dd if=/dev/zero bs=1024 count=1024 of=/data/two \
 && chmod -R 0777 /data \
 && rm /data/one

CMD ls -alh /data

The previous 5MB is now just 1MB:

REPOSITORY TAG IMAGE ID CREATED SIZE
busybox latest 54511612f1c4 8 months ago 1.13MB
test-layers2 latest 951252cf34ed 25 seconds ago 2.18MB

56 / 92

Run

57 / 92

Q: What does "invalid reference format" mean?
A reference is a pointer to an image.

The docker command line is order dependent:

docker ${docker_args} run ${run_args} image ${cmd}

Frequently happens when an invalid arg gets parsed as the image name or invalid
characters from copy/pasting from a source that changes dashes and quotes.

What does docker interpret as the image name here:

my project$ docker run -it —rm -v $(pwd):/data “my_image”

58 / 92

Q: Why do I get "executable not found"?
Did you run the intended command?

docker run --rm my_image -it echo hello world

Is docker trying to run a json string?

Does the �le exist... in the path and inside the container?

If it is a shell script, check the �rst line

#!/bin/bash

Check for windows linefeeds on linux shell scripts

If it is a binary, there is likely a missing library

59 / 92

Q: What is this TTY error?

the input device is not a TTY

The TTY is a terminal in linux

docker run -it : Interactive terminal

docker run -i : Input but no terminal, piping in a �le

docker run -t : Setup terminal but no input, color output in logs

docker run : No input, no terminal, typically used for scripts/cron/ci-cd

60 / 92

Q: Why is tail broken?
This tail command never shows lines written to the log�le:

$ docker run -d --name test-tail --rm debian tail -f /etc/issue
$ docker exec test-tail /bin/sh -c \
 'ls -l /etc/issue; \
 echo hello container >>/etc/issue; \
 ls -l /etc/issue'
-rw-r--r-- 1 root root 26 Jul 13 2017 /etc/issue
-rw-r--r-- 1 root root 42 May 14 15:50 /etc/issue
$ docker logs test-tail
Debian GNU/Linux 9 \n \l

$

61 / 92

Q: Why is tail broken?
This error comes from the docker copy-on-write, note the inode numbers:

$ docker run -d --name test-tail --rm debian tail -f /etc/issue
$ docker exec test-tail /bin/sh -c \
 'ls -il /etc/issue; \
 echo hello container >>/etc/issue; \
 ls -il /etc/issue'
41813820 -rw-r--r-- 1 root root 26 Jul 13 2017 /etc/issue
41031155 -rw-r--r-- 1 root root 42 May 14 15:58 /etc/issue
$ docker logs test-tail
Debian GNU/Linux 9 \n \l

$

62 / 92

Q: Why is tail broken?
Fix it by modifying the �le before starting the tail command:

$ docker run -d --name test-tail --rm debian /bin/sh -c \
 ':>>/etc/issue && exec tail -f /etc/issue'

63 / 92

Q: Why is tail broken?
Now adding a line to the �le shows in the logs:

$ docker exec test-tail /bin/sh -c \
 'ls -il /etc/issue; \
 echo hello container >>/etc/issue; \
 ls -il /etc/issue'
41031155 -rw-r--r-- 1 root root 26 Jul 13 2017 /etc/issue
41031155 -rw-r--r-- 1 root root 42 May 14 16:04 /etc/issue
$ docker logs test-tail
Debian GNU/Linux 9 \n \l

hello container

64 / 92

Networking

65 / 92

Q: EXPOSE vs Publishing a port?
EXPOSE

Documentation from the image creator to the person running the image

Not needed to publish

Not needed for container-to-container communication

Publish

Maps a port on the host to connect to a port in the container.

One-way, from host to container, it does not allow containers to access applications
running on the host.

66 / 92

Q: Networking issues between containers?
Make sure to listen on 0.0.0.0, not 127.0.0.1

Use a user generated network

Connect to the container port, not the host published port

Use DNS: container id, container name, service name, or network alias

Check the overlay networking ports on your �rewalls

67 / 92

Follow-up Q: Do I need to expose the port?

Nope, expose is documentation.

Follow-up Q: Do I need to publish the port?

Nope, that only makes the container accessible from outside of docker.

Follow-up Q: Do I need links?

Nope, links are deprecated, use user created networks.

68 / 92

Follow-up Q: Do I need to expose the port?

Nope, expose is documentation.

Follow-up Q: Do I need to publish the port?

Nope, that only makes the container accessible from outside of docker.

Follow-up Q: Do I need links?

Nope, links are deprecated, use user created networks.

Follow-up Q: What's a network alias?

You can give containers or services additional names on any network.

69 / 92

Q: Why can't my container reach an app on my
host using 127.0.0.1?

Container networking is namespaced.

By default, each container gets it's own loopback interface (127.0.0.1).

Solutions:

Bad: Use host networking
Ok: Connect to another interface on the host
Best: Move the host app into a container

70 / 92

Q: Issues accessing published port?
Make sure the app is listening on that port, and on 0.0.0.0 :

docker run -it --rm --net container:${cid} \
 nicolaka/netshoot netstat -lnt

71 / 92

Q: Issues accessing published port?
Make sure the app is listening on that port, and on 0.0.0.0 :

docker run -it --rm --net container:${cid} \
 nicolaka/netshoot netstat -lnt

Verify the publish command. -p 8080:80 maps host port 8080 to container port 80.

72 / 92

Q: Issues accessing published port?
Make sure the app is listening on that port, and on 0.0.0.0 :

docker run -it --rm --net container:${cid} \
 nicolaka/netshoot netstat -lnt

Verify the publish command. -p 8080:80 maps host port 8080 to container port 80.

Avoid IPv6 issues, connect to 127.0.0.1 instead of localhost . Do not try to
connect to 0.0.0.0 .

73 / 92

Q: Issues accessing published port?
Make sure the app is listening on that port, and on 0.0.0.0 :

docker run -it --rm --net container:${cid} \
 nicolaka/netshoot netstat -lnt

Verify the publish command. -p 8080:80 maps host port 8080 to container port 80.

Avoid IPv6 issues, connect to 127.0.0.1 instead of localhost . Do not try to
connect to 0.0.0.0 .

With overlay networking, open 7946/both, 4789/tcp, and protocol 50.

74 / 92

Q: Issues accessing published port?
Make sure the app is listening on that port, and on 0.0.0.0 :

docker run -it --rm --net container:${cid} \
 nicolaka/netshoot netstat -lnt

Verify the publish command. -p 8080:80 maps host port 8080 to container port 80.

Avoid IPv6 issues, connect to 127.0.0.1 instead of localhost . Do not try to
connect to 0.0.0.0 .

With overlay networking, open 7946/both, 4789/tcp, and protocol 50.

Verify the docker host you are using with echo $DOCKER_HOST . If this is set, connect
to that IP instead.

75 / 92

Volumes

76 / 92

Q: Build isn't updating a directory?
Sometimes the image is updated, and a volume is mounted over that directory.

Named volumes only get initialized on container create when the volume is empty. Host
volumes never get initialized by docker.

Volumes de�ned in the Docker�le prevent future changes to that directory.

77 / 92

PSA: Remove VOLUME in Docker�les
Users cannot extend the image with initialized data.

Anonymous volumes are created that clutter the �lesystem.

Named and host volumes do not require the volume de�ned in the image.

78 / 92

PSA: Remove VOLUME in Docker�les
Users cannot extend the image with initialized data.

Anonymous volumes are created that clutter the �lesystem.

Named and host volumes do not require the volume de�ned in the image.

Solution: de�ne volumes in the compose �le.

79 / 92

Q: How do I handle UID/GID and permission issues
with host volumes?

Option 1: chmod 777

Option 2: Update image user to match host uid/gid

Option 3: Use named volumes an manage data with containers

Option 4: Correct permissions with entrypoint

80 / 92

Q: How do I handle UID/GID and permission issues?

Update image to match host uid/gid:

FROM debian:latest
ARG UID=1000
ARG GID=1000
RUN groupadd -g $GID cuser \
 && useradd -m -u $UID -g $GID -s /bin/bash cuser
USER cuser

$ docker build \
 --build-arg UID=$(id -u) --build-arg GID=$(id -g) .

81 / 92

Q: How do I handle UID/GID and permission issues?

Using named volumes:

Populate named volume
$ tar -cC source . | docker run --rm -i -v vol:/target \
 busybox /bin/sh -c "tar -xC /target && chown -R 1000 /target"

Use or initialize empty volume from image
$ docker run -d -v vol:/data my_image

Backup/export named volume
$ docker run --rm -v vol:/source busybox tar -czC /source . \
 >backup.tgz

82 / 92

Q: How do I handle UID/GID and permission issues?

Entrypoint to correct uid/gid:

FROM jenkins/jenkins:lts
USER root
RUN apt-get update \
 && wget -O /usr/local/bin/gosu "https://github.com/..." \
 && chmod +x /usr/local/bin/gosu \
 && curl -sSL https://get.docker.com/ | sh \
 && usermod -aG docker jenkins
COPY entrypoint.sh /entrypoint.sh
ENTRYPOINT ["/entrypoint.sh"]

83 / 92

Q: How do I handle UID/GID and permission issues?

Entrypoint to correct uid/gid:

#!/bin/sh

if image and volume gid do not match, modify container user
SOCK_DOCKER_GID=$(ls -ng /var/run/docker.sock | cut -f3 -d' ')
CUR_DOCKER_GID=$(getent group docker | cut -f3 -d: || true)
if ["$SOCK_DOCKER_GID" != "$CUR_DOCKER_GID"]; then
 groupmod -g ${SOCK_DOCKER_GID} docker
fi

drop access to jenkins user and run jenkins entrypoint
exec gosu jenkins /bin/tini -- /usr/local/bin/jenkins.sh "$@"

84 / 92

Q: How to initialize a host volume from image?
Option 1: Don't. Initialize outside of docker, before starting the container

Option 2: Copy with an entrypoint from a saved location in the image.

85 / 92

Q: How to initialize a host volume from image?
Option 1: Don't. Initialize outside of docker, before starting the container

Option 2: Copy with an entrypoint from a saved location in the image.

Option 3: De�ne a named volume that's a bind mount.

$ docker volume create --driver local \
 --opt type=none \
 --opt device=/home/user/test \
 --opt o=bind \
 test_vol

86 / 92

Q: How to initialize a host volume from image?

Walk-through of example 3 - Docker�le:

FROM busybox:latest
RUN adduser --home /home/user --uid 5001 \
 --disabled-password user
USER user
COPY --chown=user sample-data/ /home/user/data/

87 / 92

Q: How to initialize a host volume from image?

Walk-through of example 3 - Sample data:

$ ls -al sample-data/
total 24
drwxr-xr-x 3 bmitch bmitch 4096 Jan 22 2017 .
drwxr-xr-x 30 bmitch bmitch 4096 May 14 09:41 ..
drwxr-xr-x 2 bmitch bmitch 4096 Jan 22 2017 dir
-rw-r--r-- 1 bmitch bmitch 14 Jan 22 2017 file2.txt
-rw-r--r-- 1 bmitch bmitch 12 Jan 22 2017 file.txt
-rw-r--r-- 1 bmitch bmitch 214 Jan 22 2017 tar-file.tgz

88 / 92

Q: How to initialize a host volume from image?

Walk-through of example 3 - create volume:

$ mkdir test-vol

$ ls -al test-vol
total 8
drwxr-sr-x 2 bmitch bmitch 4096 May 14 09:40 .
drwxr-xr-x 30 bmitch bmitch 4096 May 14 09:33 ..

$ docker volume create --driver local --opt type=none \
 --opt device=$(pwd)/test-vol --opt o=bind test-vol
test-vol

89 / 92

Q: How to initialize a host volume from image?

Walk-through of example 3 - Run the container:

$ docker run -it --rm -v test-vol:/home/user/data test-vol \
 /bin/sh -c "\
 echo hello world >/home/user/data/inside-container.txt \
 && ls -l /home/user/data"
total 20
drwxr-xr-x 2 user user 4096 May 14 13:43 dir
-rw-r--r-- 1 user user 12 Jan 23 2017 file.txt
-rw-r--r-- 1 user user 14 Jan 23 2017 file2.txt
-rw-r--r-- 1 user user 12 May 14 13:43 inside-container.txt
-rw-r--r-- 1 user user 214 Jan 23 2017 tar-file.tgz

90 / 92

Q: How to initialize a host volume from image?

Walk-through of example 3 - Show the local directory from the host:

$ ls -al test-vol/
total 28
drwxr-sr-x 3 5001 5001 4096 May 14 09:43 .
drwxr-xr-x 30 bmitch bmitch 4096 May 14 09:41 ..
drwxr-xr-x 2 5001 5001 4096 May 14 09:43 dir
-rw-r--r-- 1 5001 5001 14 Jan 22 2017 file2.txt
-rw-r--r-- 1 5001 5001 12 Jan 22 2017 file.txt
-rw-r--r-- 1 5001 5001 12 May 14 09:43 inside-container.txt
-rw-r--r-- 1 5001 5001 214 Jan 22 2017 tar-file.tgz

91 / 92

Brandon Mitchell
Twitter: @sudo_bmitch
StackOver�ow: bmitch

Thank You
Slides: https://github.com/sudo-bmitch/dc2018

92 / 92

https://github.com/sudo-bmitch/dc2018

